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Abstract
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand

time series and elucidate trends. The data available for such analyses of fish and other populations are usually
nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of
relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present
a detailed description of a negative binomial mixed-model framework that can be used to model count data and
quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of
Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin
waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of
Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes,
and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we
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172 IRWIN ET AL.

quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years,
and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in
a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g.,
trend detection) and for examining the potential of individual variance components to serve as response metrics to
large-scale anthropogenic perturbations or ecological changes.

Partitioning the total variance of a response variable into its
component sources (i.e., variance components; Urquhart et al.
1998; Fletcher and Underwood 2002; Qian and Shen 2007) can
inform a variety of research and management questions, particu-
larly those which rely on the detection of regional trends for im-
portant indicator variables (Larsen et al. 2001; Lindenmayer and
Likens 2009). Accordingly, estimation of variance components
has been performed for a variety of aquatic indices, includ-
ing water chemistry variables, species richness, stream habi-
tat characteristics, fish growth, and catch-per-unit-effort data
(Kincaid et al. 2004; Larsen et al. 2004; Wagner et al. 2007,
2009; Anlauf et al. 2011). To date, most variance-components
frameworks have been based on linear models that have some
fixed effects and assume normally distributed random effects
and error structures. These are called mixed-effect models be-
cause they include both fixed and random effects, with the vari-
ance partitioned among the random effects and observational er-
ror. When such normal distribution–based models are applied,
the response variable is commonly loge transformed to better
meet the normality, linearity, and homogeneity-of-variance as-
sumptions. However, assuming a lognormal distribution (or even
a normal distribution) for count observations is often not ideal
because count observations of organisms are typically recorded
as nonnegative integers, which then frequently have a high vari-
ance and a low mean (e.g., there are a lot of observations of few
fish, few observations of a lot of fish). Further, log transforma-
tion of data raises difficult questions such as how to treat zero
observations (Power and Moser 1999; Ver Hoef and Boveng
2007; O’Hara and Kotze 2010). Use of the negative binomial
distribution represents an alternative to data transformation, al-
lowing the distributions to be modeled as discrete and avoiding
the need for zero observations to be manipulated prior to the
analysis (Anscombe 1949; White and Bennetts 1996). Although
negative binomial models are commonly used to model counts,
they have rarely been developed as mixed-effect models (but see
Jones et al. 2009 for an application to stuttering rates) or for vari-
ance partitioning, which in this context is less straightforward
than for general linear mixed models that assume normality.

Throughout the world, fishery-independent surveys provide
essential information for understanding, restoring, and manag-
ing fish populations (Stobutzki et al. 2006; Allen et al. 2007; Ir-
win et al. 2008). Data from these surveys are used to assess stock
status and population trends (e.g., for monitoring restoration ef-
forts or setting annual harvest levels) and to evaluate the effects
of natural and anthropogenic stressors on the spatiotemporal dy-
namics of populations (Corradin et al. 2008; Jackson et al. 2008;

Irwin et al. 2009). Fishery-independent surveys target a variety
of freshwater fish species and their life stages (e.g., Sitar et al.
1999; Tyson and Knight 2001; Rudstam et al. 2011), and thus
surveys can be quite variable across studies. Even so, the infor-
mation produced by these surveys is often in the form of counts
occurring over space and time (i.e., indices of relative or ab-
solute abundance). Thus, a variance-component framework for
discrete data is needed given the widespread use of such surveys
resulting in count data with the characteristics described above.
To our knowledge, a framework for variance partitioning using
negative binomial mixed models has not been presented previ-
ously. The objective of this paper is to present such a framework
for estimating the spatial and temporal components of variation
for count data using multiple fishery-independent surveys of
Walleye Sander vitreus from across the Great Lakes basin. We
believe that incorporating variance partitioning into the fitting of
negative binomial mixed models could have wide application,
including in assessing the trend detection capabilities of alterna-
tive survey designs and evaluating whether a variance structure
is responsive to large-scale ecological changes.

METHODS
Data sources.—We used data from four fishery-independent

gill-net surveys targeting Walleyes, with the premise that im-
proved understanding of spatial and temporal variability will
allow for a thorough evaluation of current survey designs. Our
rationale for focusing on Walleyes was threefold: (1) they
are ecologically and economically important (Nepszy 1977;
Kinnunen 2003); (2) it is a management priority to maintain
or restore this species (Fielder et al. 2007; Wilson et al. 2007);
and (3) to allow direct comparison across gill-net surveys for
the insights this might provide. We include long-term (16 –
47-year) data series from Wisconsin waters of Lake Supe-
rior; Oneida Lake, New York; Saginaw Bay of Lake Huron,
Michigan; and Ohio waters of Lake Erie. All data were col-
lected using multimesh gill nets, with some differences in the
use of multi- or monofilament materials. For each survey, we
performed the analysis using the catch in a single net set as
an observation (i.e., summed across mesh panels). In both the
Saginaw Bay and Lake Erie surveys, individual site locations
were sometimes sampled multiple times within a year. For each
recorded catch (i.e., the number of animals collected in a single
net set), we also used the following information: the year sam-
pling occurred, set duration (if variable across net sets; Lake
Erie only), and the site (location). For more information on the
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NEGATIVE BINOMIAL MIXED MODELS FOR FISHERIES COUNT DATA 173

TABLE 1. Minimum sampling requirements for estimating different variance components.

Sampling requirement
Site-to-site variability

(σ2
a)

Site-to-site trend
variability (σ̄2

t )
Coherent temporal

variability (σ2
b)

Ephemeral temporal
variability (σ2

c)

Multiple sites X X X X
Multiple years Xa X X X
Some of the same sites revisited

multiple years, with no
within-year revisits

Xb

Some of the sites revisited
within years

X

aOnly necessary if sites are never revisited within a year.
bOnly necessary if sites are never sampled over multiple years.

use of gill nets to sample Walleye populations, see Hamley and
Regier (1973), Anderson (1998), or Irwin et al. (2008).

Variance components common to fishery-independent sur-
veys.—Partitioning the total variance of an ecological state
variable into its component sources using linear mixed mod-
els premised on underlying normal probability distributions has
been described elsewhere (see VanLeeuwen et al. 1996; Sims
et al. 2006). For consistency, we will use the terminology set
forth by Urquhart et al. (1998) and Wagner et al. (2007), al-
though the analyses presented here apply to negative binomial
mixed models. Our presentation is written in the context of sam-
pling that is done by annual surveys. We assume that within-year
sampling occurs in a short sampling season within which sub-
stantial systematic or random changes in the fish population
being sampled do not occur. The basic structure we put forward
could be adapted to include fixed seasonal and within-year ran-
dom effects. The primary components of variation present in
fishery-independent survey data include (Table 1; Figure 1):

1. site-to-site (spatial) variation;
2. coherent temporal (year-to-year) variation;
3. ephemeral temporal variation (i.e., site × year interaction);
4. trend variation; and
5. observational variation.

Site-to-site variation represents consistent differences among
sites in the magnitude of an attribute of interest. Estimating site-
to-site variation requires that multiple sites be sampled multiple
times, either by within-year site revisits or by returning to the
same site across multiple years. For catch data, site-to-site vari-
ation implies that individual sites differ in their overall average
abundance, or catch per unit effort). Coherent temporal varia-
tion is annual variation that affects all sites (e.g., sampling sites
within a system) in a similar manner within a year. That is,
strong coherent temporal variation would reflect the fact that,
in a given year, all sites tend to have either higher or lower
catches than the overall average (i.e., synchronous year-to-year
variation is expressed by all of the sites together). Ephemeral
temporal variation can be interpreted as independent year-to-
year variation among sites. For instance, one site may produce

higher than average catch while another may produce lower than
average catch in a given year (given the overall effect of the year
stemming from coherent variation and the overall effect of the
site stemming from site-to-site variation). Ephemeral variation
would have the same influence on all samples from a site taken
during a given year. Estimating ephemeral temporal variation
requires that multiple sites be sampled each year over multi-
ple years and that there be some within-year revisits of sites
(Table 1; Figure 1).

A more complex situation occurs when trends are overlaid on
the sources of temporal variation identified above. “Trend vari-
ation” may encompass both a systematic overall trend over time
and a site-specific trend that allows each site’s trend in catch
to vary from this overall mean trend over time. When an over-
all trend is present, the coherent variation is then the temporal
variation common to all sites, above and beyond what could be
explained by the underlying overall trend. With both overall and
site-specific trends present, ephemeral variation is the temporal
variation at a site that is not part of the trends (overall or site spe-
cific) or coherent variation but which would apply to all samples
from a site and sampling year. It can be viewed as real but lo-
cal variation in abundance (assuming constant catchability). In
many sampling designs, ephemeral variation remains lumped
in with observational variation (see below). Estimating site-
specific trend variability requires sampling multiple sites over
multiple years but not within-year revisits (Table 1; Figure 1).
Separating ephemeral variation from observational variation re-
quires multiple visits within a sampling season for at least some
site × year combinations. Lastly, observational variation is the
remaining unexplained variation in catch that is not captured by
the other estimated effects. If ephemeral variation is estimated
separately, then observational variation is the random variation
that occurs at the same site when it is sampled repeatedly within
a single year (i.e., within a short sampling season; VanLeeuwen
et al. 1996; Larsen et al. 2001; Kincaid et al. 2004).

Model specification: negative binomial mixed-effects mod-
els.—Many commonly used statistical analyses (e.g., simple
linear regression) assume an underlying normal probability dis-
tribution, which implies symmetry and continuous data. Here,
we apply regression models that use the negative binomial
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174 IRWIN ET AL.

FIGURE 1. Depiction of different variance components in the context of a count time series. Panel (A) illustrates spatial variation as the only source of variability,
so that each of the three sample sites (represented by the dashed and solid lines) has a different mean but no temporal variability. Panel (B) illustrates the addition of
coherent temporal variation to the spatial variation and panel (C) the further addition of ephemeral temporal variation, so that in (C) each site varies independently
of the other sites in each year. Panel (D) illustrates the addition of slope variation to spatial variation, so that each site has its own trend over time. One could also
add coherent and ephemeral variation in panel (D) (not shown).

distribution rather than the more commonly assumed normal
or lognormal distributions. Thus, we assume that

Yijk ∼ NB(μijk, κ), (1)

where Yijk is the total catch from the kth sample at site i in year
j, μijk is the expected value for that sample, site, and year, and
κ is the so-called scaling parameter of the negative binomial
distribution. We employ a log-link function such that, generally,
the loge (hereafter, “ln”) transformed value of the expected catch
(ηijk) would be a linear function of the predictors, i.e.,

ηijk = ν + ai + (λ + ti ) year j + b j + ci j + ln(Eijk), (2)

where ν is the fixed intercept, λ is the fixed slope (i.e., the un-
derlying overall temporal trend) using year as the covariate (i.e.,
the predictor variable), and ln(Eijk) is an effort offset term. The
year covariate was centered on the mean year for each data set’s
time series separately to improve the robustness of converging
on best-fitting solutions. Thus, year is a centered value of j. In
this model, we are assuming that the expected catch per unit
effort would be the same for repeated within-year samples at a
site but that if one sample represents more effort than another
its expected catch would be proportionally higher. The effort
offset was only applied to Lake Erie data, as the other sampling
programs were designed to have constant effort among net sets.
The terms ai (site-to-site effects), ti (site-to-site trend effects), b j
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NEGATIVE BINOMIAL MIXED MODELS FOR FISHERIES COUNT DATA 175

(coherent temporal effects) and ci j (ephemeral temporal effects)
are all random effects (i.e., the best linear unbiased predictors)
that were assumed to be independent and identically distributed
as N (0, σ2

x ), where σ2
x is the unique variance parameter for each

random effect. The ci j values were only estimated for data sets
that had repeat sampling of a site within a year (Saginaw Bay
and Lake Erie); in all other cases this source of variation is
absorbed into the observational error variance.

It should be noted that data transformation is not required
in order to apply a log-link function within a negative binomial
mixed model. With the above log-link function, the expected
value is log transformed (rather than the observed data itself),
so zero observations (i.e., net sets that do not catch any of
the target fish species) do not require special adjustments prior
to performing the regression (O’Hara and Kotze 2010). There
is no “residual” error term in equation (2) like those seen in
many standard presentations of regression models because this
equation and the assumed link function connects expected rather
than actual catch to the estimated model parameters. Although
the above equation allows for standardizing catches based on
effort, it assumes that gear catchability remains constant over
the observed time series.

It follows that expected catch in the negative binomial mixed
model is estimated by

μ̂ijk = e(η̂ijk), (3)

where η̂ is from equation (2), with all random and fixed effects
replaced by their estimates. The variance of a negative binomial
distribution can be parameterized as a quadratic function of the
mean (see Ver Hoef and Boveng 2007), i.e.,

Vijk = μijk + μ2
ijk

κ
. (4)

The degree to which variance exceeds the mean is determined
by the scaling parameter κ. It follows from equation (4) that the
variance–mean ratio is

τijk = 1 + μijk

κ
, (5)

such that τ must be ≥ 1. Our estimation model includes both
fixed and random effects so that it is akin to generalized lin-
ear mixed models (GLMM; e.g., Venables and Dichmont 2004;
Bolker et al. 2009). However, the procedures used here included
estimation of κ. Thus, in this case, the negative binomial is not
a member of the exponential family and the associated analyses
are not GLMMs, strictly speaking (Power and Moser 1999).
Because the model is not truly a GLMM, in order to obtain
maximum likelihood estimates we required software capable of
integrating multiple random effects out of the likelihood func-
tion and performing an efficient numerical search for the best-fit
parameters, which included the scaling parameter.

Model specification: parameter estimation.—We developed
the models presented here using the flexible software environ-
ment AD Model Builder (ADMB) with the random effects mod-
ule (ADMB-RE) to perform maximum likelihood estimation to
obtain the model parameters that minimized the negative log-
likelihood function (i.e., maximized the likelihood) across all
n observations (http://admb-project.org; Fournier et al. 2012).
This software uses the Laplace approximation to integrate out
the random effects. For mixed-effect models, the likelihood
function that needs to be maximized is the marginal likelihood,
which is obtained by integrating out random effects, i.e.,

L(θ) =
∫

δ

fθ(y | δ)hθ(δ)dδ. (6)

Here, fθ(y | δ) is the likelihood of the data y given the vector
of random effects δ; it is subscripted by θ to indicate that the
likelihood of the data depends on θ (i.e., the parameters). The
probability density function for the vector of random effects
is hθ(δ). This too depends on the parameter vector because
quantities such as the variances for the random effects are part
of that vector. It is convenient to rewrite equation (6) as

L(θ) =
∫

δ

exp[g(δ, θ)]dδ, (7)

where

g(δ, θ) = ln[ fθ(y | δ)] + ln[hθ(δ)] (8)

because software such as ADMB-RE only requires specification
of the parameters, the random effects, and –g(·). The software
then automatically integrates out the random effects using the
Laplace approximation at each stage as it uses a quasi-Newton
search for the parameters that maximize the likelihood (Fournier
et al. 2012). We will refer to ln[ fθ(y | δ)] = ln l as the log-
likelihood for the data conditioned on the random effects and
to ln[hθ(δ)] = ln d as the log-density for the random effects.
The negative log-likelihood function for the negative binomial
distribution is

− ln l =
n∑
1

[
− ln(�(Yijk + κ)) + ln(�(κ)) + ln(�(Yijk + 1))

− κ ln

(
κ

μijk + κ

)
− Yijk ln

(
μijk

μijk + κ

)]
(9)

(also see Bolker 2008; Hilbe 2008). In ADMB-RE, we used
the “-log negbinomial density” function on arguments Yijk, μijk,
and τijk.

Model specification: partitioning variance.—As previously
mentioned, the random effects were assumed to follow normal
distributions. For example, the random effect allowing for site-
to-site variability assumed ai ∼ N (0, σ2

a). For each random
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176 IRWIN ET AL.

effect, an additional normal density component was added to
the negative log-density function. For instance, the component
related to ai was

− ln da = m

2
ln

(
σ2

a

) + 1

2σ2
a

m∑
i=1

(
a2

i

)
, (10)

where σ2
a is an estimated parameter and m, in this case, is the

number of unique sites sampled. Thus, –ln d will consist of up
to four such terms in our analyses, and up to four additional
variance parameters (σ2

a, σ
2
t , σ

2
b, σ

2
c) associated with the random

effects will be estimated.
We wished to compare variance components within and

across systems, which required the calculation of the total vari-
ability across all sources of variation. For models including only
normally distributed random intercept terms (i.e., without ran-
dom slope effects), the total variance can be calculated by simply
summing across the estimated variance parameters (Urquhart
et al. 1998). However, this calculation is less straightforward
when applying random slope effects or the negative binomial
distribution. Random effects that apply to the slope term are
more challenging to interpret in a variance partitioning context.
For example, we included site-to-site trend perturbations (ti ) by
estimating σ2

t . Although ti ∼ N (0, σ2
t ), the influence of ti on

μ̂ijk is also affected by the value of the year covariate (specifi-
cally, the variance is a function of the covariate squared [σt

2],
where X2 is the centered year covariate squared). Therefore,
we weighted the slope random effect parameter σ2

t by the cen-
tered year covariate and calculated an average value (across all
j years) to compare with intercept random effect parameters,
that is,

σ̄2
t =

∑
j

(
year2

jσ
2
t

)
x

, (11)

where x is the number of years included in the system’s time
series. Thus, the average weighted quantity σ̄2

t rather than the
direct parameter estimate for σ2

t was included in the calculation
of total variance across the specified components.

Given the differences across systems, we elected to compare
variance components on relative scales (i.e., as proportions)
rather than as absolute values. Had we assumed that the count
data followed a lognormal distribution, the remaining variance
would have simply been the constant variance associated with
the additive residual error term for the log-transformed data.
That variance term approximately equals the squared coefficient
of variation associated with the observational error. For the neg-
ative binomial distribution (from equation 4), it can be seen that
this observational error CV is a function of the mean. Thus, to
produce a value comparable to the scale of the other variance
component terms and to what is estimated when lognormal error
is assumed in simple linear regression, we calculated a quantity
to represent the average of the squared CV for the observational

error variance in the negative binomial context, namely,

σ̂2
o =

∑ (√
V̂ijk

μ̂ijk

)2

n
. (12)

In equation (12), there are terms in the sum for each obser-
vation and n is the total number of observations. For each data
set, we then interpret this derived quantity as the remaining ob-
servational variation not accounted for by the other estimated
spatial and temporal variance components described above.

As a visual diagnostic measure, we calculated Anscombe
residuals for the negative binomial model (see Anscombe 1953
and Hilbe 2008) as

R A
ijk

=
[
3/α((1+αYijk)2/3 − (1 − αμ̂ijk)2/3) + 3

(
Y 2/3

ijk − μ̂
2/3
ijk

)]
2
(
αμ̂2

ijk + μ̂ijk
)1/6 ,

(13)

where α is equal to 1/κ. This Anscombe transformation is ex-
pected to help achieve approximate normality for the residuals
(Pierce and Schafer 1986; Jiao and Chen 2004). These residual
values were plotted for each system separately so that we could
visually inspect for heterogeneity or possible severe outliers, al-
though we ultimately did not eliminate any observations based
on residual values. We also examined normal probability plots
for the Anscombe residuals for each data set.

RESULTS
Across the four locations, the fishery-independent surveys

varied in overall sampling intensity (i.e., the number of years
of data collection and sites sampled per year), the general mag-
nitude of the catches of Walleyes, and the proportion of zero
catches (range, <1–33%; Figure 2). At the survey level, the to-
tal number of net sets employed ranged approximately between
100 and 700 (Table 2), whereas the total catch over time and
space ranged approximately between 3,000 and 45,000. While
the catches for all of the surveys shared a lower bound of zero,
Lake Erie had by far more observations of large catches (e.g.,
>75 fish/net) by individual net sets. Even with these differences,
negative binomial models produced reasonable approximations
to the count data (Figure 3). For all four systems, the fixed in-
tercepts (ν) were estimated to be positive (Table 3). All of the
fixed slope (λ) estimates were near zero, but they were positive
for Lake Superior and Saginaw Bay and negative for Oneida
Lake and Lake Erie. The estimates of the scaling parameter (κ)
ranged more broadly across systems. For each system, the plot of
Anscombe residuals displayed a fairly consistent spread across
the range of predicted values (Figure 4). Likewise, the normal
probability plots of the Anscombe residuals suggested that ap-
proximate normality was achieved in most cases (Figure 5).
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TABLE 2. Summary information for Walleye gill-net data sets.

System Year range
Total no. of
years of data

Total no. of net
sets

Total no. of
sites visited

Total no. of
zero catches

Maximum
observed catch

Lake Superior 1970–2008 37 233 12 79 197
Oneida Lake 1958–2006 47 705 15 3 220
Saginaw Bay 1993–2008 16 264 10 12 86
Lake Erie 1978–2008 27 451 119 1 493

Estimates of variance structure varied considerably across
systems (Table 3; Figure 6). Lake Superior, which had the high-
est proportion of zero-catch net sets, had the proportionally
largest site-to-site variation (σ2

a) among all systems considered
here. This was also the only case of a variance component other
than observational variability (σ̂2

o) exceeding 50% of the to-
tal variance. Variability was partitioned much more equitably
among the variance components for Saginaw Bay than for the
other systems. For all systems, the site-to-site intercept variabil-
ity (σ2

a) exceeded the site-to-site trend variability (σ̄2
t ). Coherent

FIGURE 2. Site-specific catch data (not catch per unit effort) over time for
four fishery-independent surveys.

temporal variability (σ2
b) was less than 1% of the total varia-

tion for Lake Superior but ranged from roughly 10% to 20%
for the other systems. For these systems, this coherent temporal
variability suggests that sites tended to have either higher than
average or lower than average catches in a given year.

In addition to coherent temporal variability, we attempted
to estimate ephemeral temporal variability (σ2

c) separately

FIGURE 3. Observed versus predicted probabilities of gill-net catches of
Walleyes for four systems.
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TABLE 3. Estimated model parameters (SEs in parentheses) and calculated variance components for four lake systems; NE = not estimated. No SE is reported
for the derived quantities σ̄2

t and σ̂2
o. The quantity σ̄2

t is an average weighted value based on the estimated parameter σ2
t (see Methods for details). Total variance is

defined as the sum of σ2
a , σ2

b , σ2
c , σ̄2

t , and σ̂2
o.

σ2
b σ2

c
κ ν λ σ2

a (coherent (ephemeral σ̄2
t σ̂2

o
Area of (scaling (fixed (fixed (site-to-site temporal temporal (site-to-site (observational Total

System survey parameter) intercept) slope) variance) σ2
t variance) variance) trend variance) variance) variance

Lake
Superior

Wisconsin
waters

0.875
(0.114)

1.125
(0.747)

0.017
(0.010)

6.326
(2.938)

9.51 × 10−10

(8.21 × 10−7)
0.079

(0.080)
NE 1.17 × 10−7 4.880 11.285

Oneida
Lake

Oneida Lake 2.100
(0.127)

3.033
(0.131)

–0.018
(0.005)

0.202
(0.078)

1.25 × 10−4

(6.95 × 10−5)
0.143

(0.039)
NE 0.024 0.535 0.904

Lake Huron Saginaw Bay 4.925
(0.974)

2.464
(0.206)

0.049
(0.037)

0.233
(0.119)

4.53 × 10−3

(2.98 × 10−3)
0.232

(0.104)
0.266 (0.066) 0.096 0.327 1.154

Lake Erie Ohio waters 1.789
(0.142)

1.844
(0.107)

–0.045
(0.011)

0.143
(0.080)

6.74 × 10−4

(5.18 × 10−4)
0.078

(0.034)
1.40 × 10−7

(8.07 × 10−5)
0.049 0.573 0.843

from observation variability for Saginaw Bay and Lake Erie.
Estimating this source of variability required that sites be
revisited within a sampling year. Site revisits were extremely
rare in Lake Erie, and thus little information existed to estimate
this variance component, which was essentially zero and highly

FIGURE 4. Anscombe residuals plots (R A
ijkversus μ̂ijk) based on fitting a neg-

ative binomial mixed model to gill-net catches of Walleyes for four systems.

uncertain (i.e., it had a large estimated standard error relative
to the estimated parameter value). The data from Saginaw Bay
included more routine site revisits, and ephemeral temporal
variability was the second largest variance component for this
data set. Our estimates of observational variability included
ephemeral variability for Oneida Lake and Lake Superior,
where gill-net sites were not revisited within years. Likewise,
given the relatively few site revisits within a year for Lake Erie,
ephemeral variability may have been incorporated into our
estimate of observational variability for that lake. Nominally,
observational variability was the proportionally largest variance
component for both Oneida Lake and Lake Erie, comprising
nearly 60% or more of the total variability; it also exceeded
40% of the variability for Lake Superior (Figure 6). Although
the percentage of variability in the observation component was
substantially lower for Saginaw Bay than for the other systems,
the sum of ephemeral and observational variability for this
system is similar to that seen in the three other systems.

DISCUSSION
Count data are pervasive in ecological studies (Elphick 2008),

and estimating variance components can provide insight into
spatial and temporal dynamics. However, the statistical model
used to estimate the variance components must be appropri-
ate for the discrete and often zero-inflated nature of these data.
The negative binomial distribution is worthy of consideration
for modeling biological count data, particularly when the vari-
ance is expected to exceed the mean (Anscombe 1949; White
and Bennetts 1996; Ver Hoef and Boveng 2007). The variance
partitioning framework using negative binomial mixed mod-
els presented here allows for estimating variance components
without the need for data transformation (fish catches are of-
ten log transformed in an attempt to better approximate the
assumptions of normality and constant variance). We were able
to partition the variance for all four fishery-independent data
sets, which differed in the proportion of zero observations and
often in the number of observations per site, within and across
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FIGURE 5. Anscombe residuals normality diagnostic based on fitting a negative binomial mixed model to gill-net catches of Walleyes for four systems.

years. For each of these Great Lakes basin surveys, the propor-
tion of the total variance contained within each of the spatial
and temporal components also varied. This is not unexpected,
as we would predict that variance structure is a function of both
the indicator and the system being evaluated. Previous studies
have shown that variance structure varies considerably among
indicators (e.g., Urquhart et al. 1998; Larsen et al. 2004).

Our variance-partitioning estimates for Walleye catch data
illustrate the variability in population structure over space and
time among systems, assuming constant catchability within each
data series. Much of this variability among systems is likely due
to system-specific abiotic and biotic characteristics. In freshwa-
ter ecosystems, we would expect that system-specific character-
istics (e.g., lake morphometry, food web structure, and fishing
pressure) would be important factors governing the spatial and
temporal dynamics of fish populations. However, count indices

may not accurately depict underlying population dynamics due
to changes in gear catchability (Pennington and Godo 1995;
Wilberg et al. 2010). For instance, time-varying catchability can
result from both density-dependent factors (e.g., range contrac-
tion) and the effects of environmental changes on either fish
behavior or gear efficiency (e.g., responses to increased water
clarity). Although we did not attempt to model the variation in
population state as separate from the observational process, there
are emerging modeling frameworks that focus on variation in
observed counts and attempt to separate the often confounded
variation in abundance from the variation in catchability (see
Royle and Dorazio 2008 and Kéry and Schaub 2012). Measure-
ment error can also affect fishery stock assessments that rely on
survey or catch data as a model input (Krause et al. 2002). When
catch time series are used to inform stock assessments, it is typ-
ical to assume that interannual variability in the data reflects
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FIGURE 6. Estimated variance components for four fishery-independent surveys. The components are as follows: σ2
a = site-to-site variability; σ̄2

t = site-to-site
trend variability; σ2

b = coherent temporal variability; σ2
c = ephemeral temporal variability; and σ̂2

o = observational variability; NE = not estimated.

temporal variation in relative abundance. Similar in concept to
the variance-partitioning approach outlined here, methods exist
for removing the effects of other factors contributing to interan-
nual variability of catch data (Maunder 2001; Maunder and Punt
2004). For example, Deroba and Bence (2009) adjusted com-
mercial fishery catch-per-unit-effort information for effects like
boat size, season, and license holder to develop a model-based
index of fish abundance. They applied general linear mixed
models to account for the variation that was not attributable
to abundance and then used the resulting estimates of annual
least-squares means as a temporal abundance index. Estimation
of fixed year effects would be an alternative to incorporating
coherent variability as a random effect.

Monitoring the status and trends of fish populations is criti-
cal because many populations continue to be exploited at high
levels and changing ecological conditions, such as the establish-
ment of nonnative species and climate change, continue to af-
fect aquatic ecosystems. Because system-specific variance com-
ponents can have implications for efficiently monitoring fish
population status and trends, models that partition variability
can play a critical role in designing monitoring programs (e.g.,
fishery-independent surveys) and developing research and man-
agement objectives. For example, coherent temporal variation
has been shown to have a disproportionately large effect on the
power to detect trends in monitoring data (Wagner et al. 2007),
with trend detection capabilities decreasing with increases in
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temporal coherent variation. Coherent temporal variation may
be of particular interest for fisheries monitoring programs be-
cause of its substantial influence on the ability to detect trends
over short, management-relevant time periods (e.g., 5–10 years)
and because the influence of this variance component on trend
detection cannot be directly reduced through alteration of the
survey’s sampling design (Urquhart et al. 1998; Wagner et al.
2007). The ability to estimate ephemeral temporal variation,
which can be interpreted as independent year-to-year variation
among sites, is dependent on the sampling design used. In the
analysis of Walleye catch data from the four long-term data se-
ries considered here, within-year site revisits were routine only
in the Saginaw Bay survey. Thus, the separation of ephemeral
temporal variation from observational variation was only possi-
ble for the Saginaw Bay survey data, where we saw a relatively
large ephemeral–temporal variance component. For this reason,
modifications to many ongoing fishery-independent survey de-
signs (i.e., revisiting some sites within a year) may be required
if estimating this source of variation is important to answer-
ing management questions or obtaining better understanding of
site × year interactions (Wagner et al. 2009).

There are alternative approaches to modeling count data. Our
approach involved estimation of a single negative binomial scale
parameter for each data set we analyzed, implying that there was
a particular quadratic relationship between the variance and the
mean. An overdispersed Poisson distribution is an extension of
the generalized linear (mixed) model that assumes direct pro-
portionality (rather than equality, as is the case with a standard
Poisson distribution) between the variance and the mean. Some-
times results can be robust to the assumed variance-to-mean re-
lationship, but this is not always the case (Ver Hoef and Boveng
2007; O’Hara and Kotze 2010). If the negative binomial model
with a constant scale parameter does not produce a good fit, the
scale parameter could be modeled as a function of the mean
at the cost of estimating one or a few additional parameters.
For example, Lindén and Mäntyniemi (2011) suggested using
a two-parameter function allowing a more general quadratic re-
lationship between the variance and the mean, for which the
negative binomial distribution we used and the overdispersed
Poisson distribution would be special cases. An advantage of
modeling count data using an overdispersed Poisson distribu-
tion is that standard generalized linear model software can be
used. A disadvantage is that if the assumed variance-to-mean
relationship is called into question, there is no easy solution
within that modeling framework. Adapting code that starts with
a negative binomial distribution with a constant scale parameter,
to allow for other variance-to-mean relationships, on the other
hand, is more straightforward (Lindén and Mäntyniemi 2011).
Likewise, the negative binomial parameter estimates generated
as described here could be subsequently input into standard
generalized linear model software that would treat the scaling
parameter as a known constant to take advantage of the capabil-
ities of preexisting software to produce various diagnostics for
evaluating model fit (Hilbe 2008).

We have provided a flexible framework for achieving the
goal of partitioning variance for fisheries count data using
freely available software. Although a variety of programs are
available (e.g., SAS and R) for estimating variance com-
ponents (i.e., models with random effects), we found that
ADMB-RE was the most flexible in terms of model parame-
terizations and the most stable in terms of convergence. The
program R (R Development Core Team 2009) has libraries con-
taining functions that will estimate negative binomial mixed
models, a notable one being glmmADMB (https://r-forge.r-
project.org/projects/glmmadmb/). As its name implies, the
glmmADMB function interacts with ADMB and uses ADMB-
RE for estimating parameters. However, programming directly
within ADMB provides much more flexibility, including more
control over model parameterization and the specification of de-
rived quantities (e.g., σ̄2

t ) and greater ability to include multiple
random effects (in some R functions, the number of random ef-
fects allowed when assuming the negative binomial distribution
is currently limited to one or two). The GLIMMIX procedure
in SAS (SAS 2008) is also capable of fitting negative binomial
mixed models; however, we found that convergence was often
difficult to obtain for models with more than a few random ef-
fects. Model convergence can be a problem regardless of the
software used to fit the negative binomial variance component
model. In this regard, we have found that centering (e.g., grand
mean centering) or standardizing covariates (such as the year
covariate in our model) can help improve the model’s ability
to converge. In addition, providing reasonable starting values
for parameters to the estimation software, especially for vari-
ance component parameters, is sometimes necessary to achieve
convergence.

The modeling framework we present is flexible and could
be readily expanded. For instance, it would be possible to ex-
plicitly model the longitudinal nature of many count data sets
by including an autoregressive (i.e., AR[1]) structure on, for
example, the coherent temporal random effect. In addition, al-
though sampling gear differences precluded us from modeling
these multiple data sets concurrently, the negative binomial vari-
ance components modeling framework could also be extended
to fit other count data sets simultaneously. Fitting a model to
multiple data sets together may allow for parameter estimation
that would not be possible for the data sets individually (i.e.,
allowing less informative data sets to “borrow information”).
Likewise, we believe that analysis of the response of variance
structure to large-scale ecological changes is a logical extension
of the methods described here.

The detection and assessment of regime shifts is a rapidly
growing ecological subdiscipline (Mantua 2004; deYoung et al.
2008; Karunanithi et al. 2008; Gal and Anderson 2010). One
area being emphasized is identifying early-warning signals for
critical thresholds (i.e., “tipping points”; Scheffér et al. 2009).
Others have suggested that increased variability of ecosystems
may foreshadow impending regime shifts (Brock and Carpenter
2006; Carpenter and Brock 2006). For example, Carpenter and
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Brock (2006) demonstrated that variability in lake water phos-
phorus concentrations during the summer stratification period
increased prior to a shift from a clear, macrophyte-dominated
state to a eutrophic, phytoplankton-dominated state. Anderson
et al. (2008) document that perturbation (in the form of ex-
ploitation) resulted in increased variability in fish stocks over
time. We expect that the structure of the variation (i.e., the vari-
ance components themselves) and not just the total variance
will be responsive to severe large-scale perturbations and that
this change in variance structure will have implications for how
we conduct ecological monitoring. This emphasizes the need
to continue to extend and evaluate existing approaches for esti-
mating variance components to deal with count data of the type
frequently seen in fisheries studies.
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